Sketching Linear Classifiers Over Data Streams

Kai Sheng Tai

Vatsal Sharan, Peter Bailis, Gregory Valiant
Stanford University
High-dimensional linear classifiers on streams

Ubiquitous: spam detection, ad click prediction, network traffic classification, ...

Fast: computationally cheap inference and updates

Adaptive: updated online in response to changing data distributions

Problem: high memory usage
Lots of features ⇒ more expressive classifiers,
BUT more memory needed to store weights
Example: Traffic classification with limited memory

Want classifiers that adhere to strict memory budgets (e.g., 1MB)

But also want accuracy: more features, feature combinations

Network switch
More broadly: Online learning on memory-constrained devices
Problem: How to restrict memory usage while preserving accuracy?

Proposal 1: Use only most informative features?
- In streaming setting, often don’t know feature importance *a priori*
- Feature importance can change over time (e.g., spam classification)

Proposal 2: Use only most frequent features?
- Most frequent ≠ most informative
Sketches for memory-limited stream processing

Long line of work on memory-efficient sketches for stream processing e.g., identifying the k most frequent items in a stream (“heavy hitters” problem)
- Count-Sketch [Charikar, Chen & Farach-Colton ’02]
- Count-Min Sketch [Cormode & Muthukrishnan ‘05]

Can we adapt existing sketching algorithms for use in memory-limited streaming classification?

Yes — our contribution. Weight-Median Sketch: a new sketch for linear classifiers
Main idea: most frequent items \rightarrow highest-magnitude weights
This work: **Sketched linear classifiers with online updates**

Instead of a high-dimensional classifier, maintain a memory-efficient sketch.
This work: **Sketched linear classifiers with online updates**

Instead of high-dimensional classifier, maintain a memory-efficient sketch

Update the classifier as new examples are observed
This work: **Sketched linear classifiers with online updates**

Instead of a high-dimensional classifier, maintain a memory-efficient sketch. Update the classifier as new examples are observed.
This work: **Sketched linear classifiers with online updates**

Instead of high-dimensional classifier, maintain a **memory-efficient sketch**

Update the classifier as new examples are observed
This work: **Sketched linear classifiers with online updates**

Instead of high-dimensional classifier, maintain a memory-efficient sketch

Update the classifier as new examples are observed
This work: **Sketched linear classifiers with online updates**

Instead of a high-dimensional classifier, maintain a memory-efficient sketch.

Update the classifier as new examples are observed.
This work: **Sketched linear classifiers with online updates**

Instead of high-dimensional classifier, maintain a **memory-efficient sketch**

Update the classifier as new examples are observed
This work: Sketched linear classifiers with online updates

Instead of a high-dimensional classifier, maintain a memory-efficient sketch.

Update the classifier as new examples are observed.

How accurate is the sketched classifier?

How do the sketched weights relate to the weights of the original, high-dimensional model?
Related Work

Streaming Algorithms

- Finding frequent items in data streams [Charikar et al. ‘02, Cormode & Muthukrishnan ‘05, etc.]
- Identifying differences between streams [Schweller et al. ‘04, Cormode & Muthukrishnan ‘05, etc.]

Machine Learning

- Resource-constrained learning [Konecny et al. ‘15, Gupta et al. ‘17, Kumar et al. ‘17]
- Sparsity-inducing regularization [Tibshirani ‘96 & many others]
- Learning compressed classifiers (e.g., feature hashing) [Shi et al. ‘09, Weinberger et al. ‘09, Calderbank et al. ‘09]
1. algorithm
2. evaluation
3. applications
The WM-Sketch: an extension of the Count-Sketch

Count-Sketch update
- maintain a low-dimensional sketch of counts
- Update: hash each index \(i \) to \(s \) buckets, apply additive update

WM-Sketch update
- maintain a low-dimensional sketch of weights
- Update: gradient descent on sketched weights
The WM-Sketch: an extension of the Count-Sketch

Count-Sketch query

WM-Sketch query

Same query procedure

Count-Sketch \rightarrow low-error estimates of largest counts
WM-Sketch \rightarrow low-error estimates of largest-magnitude weights

(note: standard feature hashing does not support weight recovery)
WM-Sketch Analysis: Guarantees on weight approximation error

We compare the optimal weights for the original data, w_* (i.e., the minimizer of the empirical loss) to those recovered from the optimal sketched weights, w_{est}.

Theorem (informal)

Let d be the dimension of the data. With probability $1 - \delta$, the maximum entrywise approximation error is $\leq \epsilon \|w_*\|_1$ for sketch size $O(\epsilon^{-4} \log^3(d/\delta))$.

- Only need sketch dimension much smaller than d.
- Good approximation of high-magnitude weights.
Important optimization in practice: Store large weights in a heap

<table>
<thead>
<tr>
<th>index</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5.0</td>
</tr>
<tr>
<td>j</td>
<td>-4.2</td>
</tr>
<tr>
<td>k</td>
<td>3.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Anytime queries for estimated top-k weights
Reduces “bad” collisions with large weights in sketch
Significantly improves classification accuracy and weight recovery accuracy in practice
1. algorithm

2. evaluation
 - Classification accuracy
 - Weight recovery accuracy

3. applications
Classification accuracy: **WM-Sketch improves on Feature Hashing**

Malicious URLs \((d = 3.2M)\)

- Use only most frequent features
- Feature hashing
- + heap
- Error of uncompressed logistic regression
Weight recovery: WM-Sketch improves on heavy hitters
1. **algorithm**
2. **evaluation**
3. **applications**
 - Network monitoring
 - Identifying correlated events
Network monitoring: what are the largest relative differences?

Network packet

<table>
<thead>
<tr>
<th>Version: IPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src: 136.0.1.1</td>
</tr>
<tr>
<td>Dest: 129.0.1.1</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Features

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src[1]</td>
<td>136</td>
</tr>
<tr>
<td>Dest[1]</td>
<td>129</td>
</tr>
<tr>
<td>Src[2]</td>
<td>136.0</td>
</tr>
<tr>
<td>Dest[2]</td>
<td>129.0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Largest weights → features (e.g., IP prefixes) with largest relative differences between flows

Previous work: “relative deltoids” in data streams [CM’05]

Outperforms Count-Min baselines (even when baselines are given 8x memory budget)

logistic regression with WM-Sketch

Flow A

Flow B

network switch
Explaining outliers: which features indicate anomalies?

Return features most indicative of being an outlier (weights can be interpreted as log-odds ratio)

Streaming outlier explanation (e.g., MacroBase [Bailis et al. ‘17])

Outperforms heavy hitter-based methods for identifying “high-risk” features
Identifying correlations: which events tend to co-occur?

Text stream

Token 1
United
computer

Token 2
States
science

Label
+1
+1
−1
real co-occurring events

synthetic event pair

logistic regression with WM-Sketch

Features = event pairs

Largest weights → events that are strongly correlated

Exact counter-based approach: 188MB memory
Approximation with WM-Sketch: 1.4MB memory

Pair
(United, States)
(Barack, Obama)
(computer, science)

Weight
+4.5
+4.0
+2.0

Approximation ⇒ >100x less memory usage
Takeaways

Weight-Median Sketch:
- Count-Sketch for linear classification
- Improved feature hashing
- Lightweight, memory-efficient classifiers everywhere

Stream processing:
- Many tasks can be formulated as classification problems
- Still lots of room for exploration

Paper: tinyurl.com/wmsketch
Code: github.com/stanford-futuredata/wmsketch
kaishengtai.github.io
kst@cs.stanford.edu
@kaishengtai