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Distributed Word Representations

•
•

•

Rd
snow

ice

person

I Representations of words as real-valued vectors

I Now seemingly ubiquitous in NLP
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Word vectors and meaning

ice

vs.

snow
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But what about the meaning of sentences?

the snowboarder is leaping over snow

vs.

a person who is snowboarding jumps into the air
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Distributed Sentence Representations

•
•

•

Rd
the snowboarder is leaping over snow

a person who is snowboarding

jumps into the air

the person is jumping

I Like word vectors, represent sentences as real-valued vectors

I What for?

– Sentence classification

– Semantic relatedness / paraphrase

– Machine translation

– Information retrieval
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Our Work

I A new model for sentence representations: Tree-LSTMs

I Generalizes the widely-used chain-structured LSTM

I New state-of-the-art empirical results:

– Sentiment classification (Stanford Sentiment Treebank)

– Semantic relatedness (SICK dataset)
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Compositional Representations

φ

v(tall)

v(tree)

v(tall tree)

I Idea: Compose phrase and sentence reps from their constituents

I Use a composition function φ

I Steps:

1. Choose some compositional order for a sentence
I e.g. sequentially left-to-right

2. Recursively apply φ until representation for entire sentence is
obtained

I We want to learn φ from data
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Sequential Composition

the cat climbs the tall tree

φ φ φ φ φ φ

I State is composed left-to-right

I Input at each time step is a word vector

I Rightmost output is the representation of the entire sentence

I Common parameterization: recurrent neural network (RNN)
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Sequential Composition:

Long Short-Term Memory (LSTM) Networks

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

I A particular parameterization of the composition function φ

I Recent popularity: strong empirical results on sequence-based tasks
– e.g. language modeling, neural machine translation
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Sequential Composition:

Long Short-Term Memory (LSTM) Networks

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

I Memory cell: a vector representing the inputs seen so far

I Intuition: state can be preserved over many time steps
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Sequential Composition:

Long Short-Term Memory (LSTM) Networks

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

I Input/output/forget gates: vectors in [0, 1]d

I Multiplied elementwise (“soft masking”)

I Intuition: Selective memory read/write, selective information
propagation 11



Sequential Composition:

(Simplified) step-by-step LSTM composition

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·
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Sequential Composition:

(Simplified) step-by-step LSTM composition

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

1. Starting with state at t
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Sequential Composition:

(Simplified) step-by-step LSTM composition

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

1. Starting with state at t

2. Predict gates from input and state at t
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Sequential Composition:

(Simplified) step-by-step LSTM composition

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

1. Starting with state at t

2. Predict gates from input and state at t

3. Mask memory cell with forget gate
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Sequential Composition:

(Simplified) step-by-step LSTM composition

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

1. Starting with state at t

2. Predict gates from input and state at t

3. Mask memory cell with forget gate

4. Add update computed from input and state at t 16



Can we do better?
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Can we do better?

I Sentences have additional structure beyond word-ordering

I This is additional information that we can exploit
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Tree-Structured Composition

the cat climbs the tall tree

φ φ

φ

φ

φ

I In this work: compose following the syntactic structure of sentences

– Dependency parse

– Constituency parse

I Previous work: recursive neural networks
(Goller and Kuchler, 1996; Socher et al., 2011)
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Generalizing the LSTM

forget gate

input vector

input gate

step t

input vector

input gate

step t+ 1

output vector

output gate

output vector

output gate

· · · · · ·

I Standard LSTM: each node has one child

I We want to generalize this to accept multiple children
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Tree-Structured LSTMs

forget

gate

forget

gate
input

input gate

output

output gate
· · ·

· · ·

· · ·

· · ·

· · ·

I Natural generalization of the sequential LSTM composition function

I Allows for trees with arbitrary branching factor

I Standard chain-structured LSTM is a special case
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Tree-Structured LSTMs

forget

gate

forget

gate
input

input gate

output

output gate
· · ·

· · ·

· · ·

· · ·

· · ·

I Key feature: A separate forget gate for each child

I Selectively preserve information from each child
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Tree-Structured LSTMs

forget

gate

forget

gate
input

input gate

output

output gate
· · ·

· · ·

· · ·

· · ·

· · ·

I Selectively preserve information from each child

I How can this be useful?

– Ignoring unimportant clauses in sentence

– Emphasizing sentiment-rich children for sentiment classification
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Empirical Evaluation

I Sentiment classification

– Stanford Sentiment Treebank

I Semantic relatedness

– SICK dataset, SemEval 2014 Task 1
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Evaluation 1: Sentiment Classification

I Task: Predict the sentiment of movie review sentences

– Binary subtask: positive / negative

– 5-class subtask: strongly positive / positive / neutral / negative /
strongly negative

I Dataset: Stanford Sentiment Treebank (Socher et al., 2013)

I Supervision: head-binarized constituency parse trees with sentiment
labels at each node

I Model: Tree-LSTM on given parse trees, softmax classifier at each
node
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Evaluation 2: Semantic Relatedness

“the snowboarder is leaping
over white snow”

?∼
“a person who is practicing

snowboarding jumps into the
air”

I Task: Predict the semantic relatedness of sentence pairs

I Dataset: SICK from SemEval 2014, Task 1 (Marelli et al., 2014)

I Supervision: human-annotated relatedness scores y ∈ [1, 5]

I Model:

– Sentence representation with Tree-LSTM on dependency parses

– Similarity predicted by NN regressor given representations at root
nodes
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Sentiment Classification Results

Method 5-class Binary

RNTN (Socher et al., 2013) 45.7 85.4
Paragraph-Vec (Le & Mikolov, 2014) 48.7 87.8

Convolutional NN (Kim 2014) 47.4 88.1
Epic (Hall et al., 2014) 49.6 –

DRNN (Irsoy & Cardie, 2014) 49.8 86.6

LSTM 46.4 84.9
?Bidirectional LSTM 49.1 87.5

Constituency Tree-LSTM 51.0 88.0

I Metric: Binary/5-class accuracy

I ? = Our own benchmarks
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Semantic Relatedness Results

Method Pearson’s r

Word vector average 0.758
Meaning Factory (Bjerva et al., 2014) 0.827

ECNU (Zhao et al., 2014) 0.841

LSTM 0.853
?Bidirectional LSTM 0.857

Dependency Tree-LSTM 0.868

I Metric: Pearson correlation with gold annotations (higher is better)

I ? = Our own benchmarks
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Qualitative Analysis
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LSTMs vs. Tree-LSTMs:

How does structure help?

It ’s actually pretty good in the first few minutes , but
the longer the movie goes , the worse it gets .

LSTM Tree-LSTM Gold

– – –

What happens when the clauses are inverted?
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LSTMs vs. Tree-LSTMs:

How does structure help?

The longer the movie goes , the worse it gets , but
it ’s actually pretty good in the first few minutes .

LSTM Tree-LSTM Gold

+ – –

LSTM prediction switches, but Tree-LSTM prediction does not!

Either LSTM belief state is overwritten by last seen sentiment-rich word,
or just always inverts the sentiment at “but”.
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LSTM vs. Tree-LSTM:

Hard Cases in Sentiment

If Steven Soderbergh’s ‘Solaris’ is a failure it is a glorious failure.

LSTM Tree-LSTM Gold

– – – – ++
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Forget Gates: Selective State Preservation

a waste of good performances

I Striped rectangles = forget gate activations

I More white ⇒ more of that child’s state is preserved
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Forget Gates: Selective State Preservation

a waste of good performances

I States of sentiment-rich children are emphasized
– e.g. “a” vs. “waste”

I “a waste” emphasized over “of good performances” 34



Conclusion

I We introduce Tree-LSTMs for composing distributed representations
of sentences

I Tree-LSTMs outperform previous methods on sentiment, semantic
similarity

I By making use of structural information, we can do better than
standard sequential LSTMs
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Thanks

(t-SNE visualization of Tree-LSTM phrase and sentence representations

on the Stanford Sentiment Treebank)

Code

github.com/stanfordnlp/treelstm

Contact

Kai Sheng Tai kst@metamind.io
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