Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

Kai Sheng Tai^{†‡}, Richard Socher[‡], and Christopher D. Manning[†]
[†]Stanford University, [‡]MetaMind

July 29, 2015

Distributed Word Representations

- Representations of words as real-valued vectors
- ▶ Now seemingly ubiquitous in NLP

Word vectors and meaning

ice

VS.

snow

But what about the meaning of sentences?

the snowboarder is leaping over snow

VS.

a person who is snowboarding jumps into the air

Distributed Sentence Representations

Like word vectors, represent sentences as real-valued vectors

- What for?
 - Sentence classification
 - Semantic relatedness / paraphrase
 - Machine translation
 - Information retrieval

Our Work

- ► A new model for sentence representations: Tree-LSTMs
- Generalizes the widely-used chain-structured LSTM
- ▶ New state-of-the-art empirical results:
 - Sentiment classification (Stanford Sentiment Treebank)
 - Semantic relatedness (SICK dataset)

Compositional Representations

- ► Idea: Compose phrase and sentence reps from their constituents
- \blacktriangleright Use a composition function ϕ
- Steps:
 - 1. Choose some compositional order for a sentence
 - e.g. sequentially left-to-right
 - 2. Recursively apply ϕ until representation for entire sentence is obtained
- We want to learn ϕ from data

Sequential Composition

- State is composed left-to-right
- Input at each time step is a word vector
- Rightmost output is the representation of the entire sentence
- Common parameterization: recurrent neural network (RNN)

Sequential Composition: Long Short-Term Memory (LSTM) Networks

- \blacktriangleright A particular parameterization of the composition function ϕ
- Recent popularity: strong empirical results on sequence-based tasks
 e.g. language modeling, neural machine translation

Sequential Composition: Long Short-Term Memory (LSTM) Networks

- Memory cell: a vector representing the inputs seen so far
- ▶ Intuition: state can be preserved over many time steps

Sequential Composition: Long Short-Term Memory (LSTM) Networks

- ▶ Input/output/forget gates: vectors in [0,1]^d
- Multiplied elementwise ("soft masking")
- Intuition: Selective memory read/write, selective information propagation

1. Starting with state at t

- 1. Starting with state at t
- 2. Predict gates from input and state at t

- 1. Starting with state at t
- 2. Predict gates from input and state at t
- 3. Mask memory cell with forget gate

- 1. Starting with state at t
- 2. Predict gates from input and state at t
- 3. Mask memory cell with forget gate
- 4. Add update computed from input and state at t

Can we do better?

Can we do better?

Sentences have additional structure beyond word-ordering

▶ This is additional information that we can exploit

Tree-Structured Composition

▶ In this work: compose following the syntactic structure of sentences

- Dependency parse
- Constituency parse
- Previous work: recursive neural networks (Goller and Kuchler, 1996; Socher et al., 2011)

Generalizing the LSTM

- Standard LSTM: each node has one child
- ▶ We want to generalize this to accept multiple children

Tree-Structured LSTMs

- ▶ Natural generalization of the sequential LSTM composition function
- Allows for trees with arbitrary branching factor
- Standard chain-structured LSTM is a special case

Tree-Structured LSTMs

- ► Key feature: A separate forget gate for each child
- Selectively preserve information from each child

Tree-Structured LSTMs

- Selectively preserve information from each child
- ► How can this be useful?
 - Ignoring unimportant clauses in sentence
 - Emphasizing sentiment-rich children for sentiment classification

Empirical Evaluation

Sentiment classification

- Stanford Sentiment Treebank
- Semantic relatedness
 - SICK dataset, SemEval 2014 Task 1

Evaluation 1: Sentiment Classification

Task: Predict the sentiment of movie review sentences

- Binary subtask: positive / negative
- 5-class subtask: strongly positive / positive / neutral / negative / strongly negative
- Dataset: Stanford Sentiment Treebank (Socher et al., 2013)
- Supervision: head-binarized constituency parse trees with sentiment labels at each node
- Model: Tree-LSTM on given parse trees, softmax classifier at each node

Evaluation 2: Semantic Relatedness

"the snowboarder is leaping over white snow" ? "a person who is practicing > snowboarding jumps into the air"

- **Task:** Predict the semantic relatedness of sentence pairs
- ▶ Dataset: SICK from SemEval 2014, Task 1 (Marelli et al., 2014)
- Supervision: human-annotated relatedness scores $y \in [1, 5]$
- Model:
 - Sentence representation with Tree-LSTM on dependency parses
 - Similarity predicted by NN regressor given representations at root nodes

Sentiment Classification Results

Method	5-class	Binary	
RNTN (Socher et al., 2013)	45.7	85.4	
Paragraph-Vec (Le & Mikolov, 2014)	48.7	87.8	
Convolutional NN (Kim 2014)	47.4	88.1	
Epic (Hall et al., 2014)	49.6	-	
DRNN (Irsoy & Cardie, 2014)	49.8	86.6	
LSTM	46.4	84.9	
Bidirectional LSTM	49.1	87.5	},
Constituency Tree-LSTM	51.0	88.0	J

► **Metric:** Binary/5-class accuracy

► ★ = Our own benchmarks

Semantic Relatedness Results

Method	Pearson's r	
Word vector average	0.758	
Meaning Factory (Bjerva et al., 2014)	0.827	
ECNU (Zhao et al., 2014)	0.841	
LSTM	0.853	
Bidirectional LSTM	0.857	\ }*
Dependency Tree-LSTM	0.868	J

• Metric: Pearson correlation with gold annotations (higher is better)

► ★ = Our own benchmarks

Qualitative Analysis

LSTMs vs. Tree-LSTMs: How does structure help?

It 's actually **pretty good** in the first few minutes , **but** the longer the movie goes , the **worse** it gets .

LSTM Tree-LSTM Gold

What happens when the clauses are inverted?

LSTMs vs. Tree-LSTMs: How does structure help?

The longer the movie goes , the worse it gets , but it 's actually pretty good in the first few minutes .

LSTM	Tree-LSTM	Gold
+	_	_

LSTM prediction switches, but Tree-LSTM prediction does not!

Either LSTM belief state is overwritten by last seen sentiment-rich word, *or* just always inverts the sentiment at "but". LSTM vs. Tree-LSTM: Hard Cases in Sentiment

If Steven Soderbergh's 'Solaris' is a failure it is a glorious failure.

LSTM Tree-LSTM Gold

Forget Gates: Selective State Preservation

- Striped rectangles = forget gate activations
- More white \Rightarrow more of that child's state is preserved

Forget Gates: Selective State Preservation

States of sentiment-rich children are emphasized
 e.g. "a" vs. "waste"

"a waste" emphasized over "of good performances"

Conclusion

- We introduce Tree-LSTMs for composing distributed representations of sentences
- Tree-LSTMs outperform previous methods on sentiment, semantic similarity
- By making use of structural information, we can do better than standard sequential LSTMs

Thanks

(t-SNE visualization of Tree-LSTM phrase and sentence representations

on the Stanford Sentiment Treebank)

Code

github.com/stanfordnlp/treelstm

Contact

Kai Sheng Tai kst@metamind.io