
Kai Sheng Tai

Sketching Linear Classifiers
Over Data Streams

Vatsal Sharan, Peter Bailis, Gregory Valiant
Stanford University

High-dimensional linear classifiers on streams

Ubiquitous: spam detection, ad click prediction,
 network traffic classification, ...

Fast: computationally cheap inference
 and updates

Adaptive: updated online in response to
 changing data distributions

Problem: high memory usage
Lots of features ⇒ more expressive classifiers,

 BUT more memory needed to store weights

Example: Traffic classification with limited memory

Version: IPv4
Src: 136.0.1.1
Dest: 129.0.1.1
...

 Src[:1] = 136
Dest[:1] = 129
 Src[:2] = 136.0
Dest[:2] = 129.0
...

Classifier

 Accept

 Reject
 (filter)

Network packet Features

network switch

Want classifiers that adhere to
strict memory budgets (e.g., 1MB)

But also want accuracy:
more features, feature combinations

More broadly: Online learning on memory-constrained devices

Problem: How to restrict memory usage while preserving accuracy?

Proposal 1: Use only most informative features?
- In streaming setting, often don’t know feature importance a priori
- Feature importance can change over time (e.g., spam classification)

Proposal 2: Use only most frequent features?
- Most frequent ≠ most informative

Sketches for memory-limited stream processing

Can we adapt existing sketching algorithms for
use in memory-limited streaming classification?

Long line of work on memory-efficient sketches for stream processing

e.g., identifying the k most frequent items in a stream (“heavy hitters” problem)

- Count-Sketch [Charikar, Chen & Farach-Colton ‘02]
- Count-Min Sketch [Cormode & Muthukrishnan ‘05]

Yes — our contribution. Weight-Median Sketch: a new sketch for linear classifiers
Main idea: most frequent items → highest-magnitude weights

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

How accurate is the sketched classifier?

How do the sketched weights relate to the
weights of the original, high-dimensional model?

Related Work

Finding frequent items in data streams [Charikar et al. ‘02, Cormode & Muthukrishnan ‘05, etc.]

Identifying differences between streams [Schweller et al. ‘04, Cormode & Muthukrishnan ‘05, etc.]

Resource-constrained learning [Konecny et al. ‘15, Gupta et al. ‘17, Kumar et al. ‘17]

Sparsity-inducing regularization [Tibshirani ‘96 & many others]

Learning compressed classifiers [Shi et al. ‘09, Weinberger et al. ‘09, Calderbank et al. ‘09]
(e.g., feature hashing)

Streaming Algorithms

Machine Learning

1. algorithm
2. evaluation
3. applications

The WM-Sketch: an extension of the Count-Sketch

i

count increments

hash
i

gradient estimates

sketch of weights

hash

Count-Sketch update WM-Sketch update

Count-Sketch: maintain a low-dimensional sketch of counts
Update: hash each index i to s buckets, apply additive update

s s

WM-Sketch: maintain a low-dimensional sketch of weights
Update: gradient descent on sketched weights

k/s k/s

sketch of counts
(s x k/s array)

The WM-Sketch: an extension of the Count-Sketch

sketch of counts

hash
i

sketch of weights

hash

Count-Sketch query WM-Sketch query

s s

k/s k/s

i

Same query procedure

Count-Sketch → low-error estimates of largest counts
WM-Sketch → low-error estimates of largest-magnitude weights

(note: standard feature hashing does not support weight recovery)

compute median
→ estimated count

compute median
→ estimated weight

Let d be the dimension of the data. With probability ,
the maximum entrywise approximation error is
for sketch size

WM-Sketch Analysis: Guarantees on weight approximation error

We compare the optimal weights for the original data, w*
 (i.e., the minimizer of the empirical loss)
 to those recovered from the optimal sketched weights, west

Theorem (informal)

good approximation of
high-magnitude weights

only need sketch dimension
much smaller than d

Important optimization in practice: Store large weights in a heap

index value

 i 5.0
 j -4.2
 k 3.5

……

min-heap ordered
by weight magnitude

sketch

Anytime queries for estimated top-k weights

Reduces “bad” collisions with large weights in sketch

Significantly improves classification accuracy
 and weight recovery accuracy in practice

large weights

small weights

1. algorithm
2. evaluation

3. applications

- Classification accuracy
- Weight recovery accuracy

Classification accuracy: WM-Sketch improves on Feature Hashing

error of uncompressed
logistic regression

use only most frequent features

feature hashing

 + heap

Weight recovery: WM-Sketch improves on heavy hitters

better

track most frequent features

feature hashing
 + heap

1. algorithm
2. evaluation
3. applications

- Network monitoring
- Identifying correlated events

Network monitoring: what are the largest relative differences?

Version: IPv4
Src: 136.0.1.1
Dest: 129.0.1.1
...

 Src[:1] = 136
Dest[:1] = 129
 Src[:2] = 136.0
Dest[:2] = 129.0
...

logistic
regression with

WM-Sketch

 Flow A

 Flow B

Network packet Features

network switch

Largest weights → features (e.g., IP prefixes) with largest
relative differences between flows

Previous work: “relative deltoids” in data streams [CM’05]

Outperforms Count-Min baselines
(even when baselines are given 8x memory budget)

Explaining outliers: which features indicate anomalies?

IP City Latency
136.0.1.1 San Francisco 10ms
161.0.1.1 New York 12ms
129.0.1.1 Houston 500ms
… … …

logistic regression with WM-Sketch

Feature Weight
City=Houston +4.2
City=Austin +2.0
IP=129.x.x.x +1.5
… …

Return features most indicative of being an outlier
(weights can be interpreted as log-odds ratio)

Streaming outlier explanation (e.g., MacroBase [Bailis et al. ‘17])

Outperforms heavy hitter-based methods for identifying
“high-risk” features

label = -1

label = +1
(e.g. >99th percentile)

Identifying correlations: which events tend to co-occur?

Token 1 Token 2 Label
United States +1
computer science +1
computer the -1
… … …

logistic regression with WM-Sketch

Pair Weight
(United, States) +4.5
(Barack, Obama) +4.0
(computer, science) +2.0
… …

real co-occurring events

synthetic event pair
Text stream

Features = event pairs

Largest weights → events that are strongly correlated

Exact counter-based approach: 188MB memory
Approximation with WM-Sketch: 1.4MB memory

Approximation ⇒ >100x less memory usage

Paper: tinyurl.com/wmsketch
Code: github.com/stanford-futuredata/wmsketch

kaishengtai.github.io
kst@cs.stanford.edu
@kaishengtai

Takeaways
Weight-Median Sketch:

- Count-Sketch for linear classification
- Improved feature hashing
- Lightweight, memory-efficient

classifiers everywhere

Stream processing:
- Many tasks can be formulated as classification problems
- Still lots of room for exploration

