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High-dimensional linear classifiers on streams

Ubiquitous: spam detection, ad click prediction,    
    network traffic classification, ...

Fast: computationally cheap inference 
    and updates

Adaptive: updated online in response to 
    changing data distributions

Problem: high memory usage
Lots of features ⇒   more expressive classifiers,

       BUT more memory needed to store weights



Example: Traffic classification with limited memory

Version:   IPv4
Src:  136.0.1.1
Dest: 129.0.1.1
...

 Src[:1] = 136
Dest[:1] = 129
 Src[:2] = 136.0
Dest[:2] = 129.0
...

Classifier

        Accept 

        Reject 
        (filter)

Network packet Features

network switch

Want classifiers that adhere to 
strict memory budgets (e.g., 1MB)

But also want accuracy:
more features, feature combinations



More broadly: Online learning on memory-constrained devices



Problem: How to restrict memory usage while preserving accuracy?

Proposal 1: Use only most informative features?
- In streaming setting, often don’t know feature importance a priori 
- Feature importance can change over time  (e.g., spam classification)

Proposal 2: Use only most frequent features?
- Most frequent ≠ most informative



Sketches for memory-limited stream processing

Can we adapt existing sketching algorithms for
use in memory-limited streaming classification?

Long line of work on memory-efficient sketches for stream processing

e.g., identifying the k most frequent items in a stream (“heavy hitters” problem)

- Count-Sketch [Charikar, Chen & Farach-Colton ‘02]
- Count-Min Sketch [Cormode & Muthukrishnan ‘05]

Yes — our contribution. Weight-Median Sketch: a new sketch for linear classifiers
Main idea:  most frequent items  →  highest-magnitude weights 



This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch
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This work: Sketched linear classifiers with online updates

Instead of high-dimensional classifier,
maintain a memory-efficient sketch

Update the classifier as new
examples are observed

How accurate is the sketched classifier?

How do the sketched weights relate to the 
weights of the original, high-dimensional model?



Related Work

Finding frequent items in data streams [Charikar et al. ‘02, Cormode & Muthukrishnan ‘05, etc.]

Identifying differences between streams [Schweller et al. ‘04, Cormode & Muthukrishnan ‘05, etc.]

Resource-constrained learning [Konecny et al. ‘15, Gupta et al. ‘17, Kumar et al. ‘17]

Sparsity-inducing regularization [Tibshirani ‘96 & many others]

Learning compressed classifiers [Shi et al. ‘09, Weinberger et al. ‘09, Calderbank et al. ‘09]
(e.g., feature hashing)

Streaming Algorithms

Machine Learning



1. algorithm
2. evaluation
3. applications



The WM-Sketch: an extension of the Count-Sketch

i

count increments

hash
i

gradient estimates

sketch of weights

hash

Count-Sketch update WM-Sketch update

Count-Sketch:  maintain a low-dimensional sketch of counts
Update:  hash each index i to s buckets, apply additive update

s s

WM-Sketch:  maintain a low-dimensional sketch of weights
Update:  gradient descent on sketched weights

k/s k/s

sketch of counts
(s x k/s array)



The WM-Sketch: an extension of the Count-Sketch

sketch of counts

hash
i

sketch of weights

hash

Count-Sketch query WM-Sketch query

s s

k/s k/s

i

Same query procedure

Count-Sketch  →  low-error estimates of largest counts
WM-Sketch  →  low-error estimates of largest-magnitude weights

(note: standard feature hashing does not support weight recovery)

compute median
→ estimated count

compute median
→ estimated weight



Let d be the dimension of the data. With probability          , 
the maximum entrywise approximation error is 
for sketch size

WM-Sketch Analysis: Guarantees on weight approximation error

We compare the optimal weights for the original data, w*  
       (i.e., the minimizer of the empirical loss)
      to those recovered from the optimal sketched weights, west

Theorem (informal)

good approximation of 
high-magnitude weights

only need sketch dimension 
much smaller than d



Important optimization in practice: Store large weights in a heap

 

index            value

 i       5.0
 j      -4.2
 k       3.5

……

min-heap ordered 
by weight magnitude

sketch

Anytime queries for estimated top-k weights

Reduces “bad” collisions with large weights in sketch 

Significantly improves classification accuracy
      and weight recovery accuracy in practice

large weights

small weights



1. algorithm
2. evaluation

3. applications

- Classification accuracy
- Weight recovery accuracy



Classification accuracy: WM-Sketch improves on Feature Hashing

error of uncompressed
logistic regression

use only most frequent features

feature hashing 

    + heap



Weight recovery: WM-Sketch improves on heavy hitters

better

track most frequent features

feature hashing
    + heap



1. algorithm
2. evaluation
3. applications

- Network monitoring
- Identifying correlated events



Network monitoring: what are the largest relative differences?

Version:   IPv4
Src:  136.0.1.1
Dest: 129.0.1.1
...

 Src[:1] = 136
Dest[:1] = 129
 Src[:2] = 136.0
Dest[:2] = 129.0
...

logistic 
regression with 

WM-Sketch

 Flow A

 Flow B

Network packet Features

network switch

Largest weights → features (e.g., IP prefixes) with largest 
relative differences between flows

Previous work: “relative deltoids” in data streams  [CM’05]

Outperforms Count-Min baselines 
(even when baselines are given 8x memory budget)



Explaining outliers: which features indicate anomalies?

IP City Latency
136.0.1.1 San Francisco    10ms
161.0.1.1 New York    12ms
129.0.1.1 Houston  500ms
… …           … 

logistic regression with WM-Sketch

Feature Weight
City=Houston +4.2
City=Austin +2.0
IP=129.x.x.x +1.5
… … 

Return features most indicative of being an outlier
(weights can be interpreted as log-odds ratio)

Streaming outlier explanation (e.g., MacroBase [Bailis et al. ‘17])

Outperforms heavy hitter-based methods for identifying
“high-risk” features

label = -1

label = +1
(e.g. >99th percentile)



Identifying correlations: which events tend to co-occur?

Token 1 Token 2 Label
United States    +1
computer science +1
computer the  -1
… …           … 

logistic regression with WM-Sketch

Pair Weight
(United, States) +4.5
(Barack, Obama)     +4.0
(computer, science) +2.0
… … 

real co-occurring events

synthetic event pair
Text stream

Features = event pairs

Largest weights → events that are strongly correlated

Exact counter-based approach: 188MB memory
Approximation with WM-Sketch:  1.4MB memory

Approximation ⇒  >100x less memory usage



Paper: tinyurl.com/wmsketch
Code:  github.com/stanford-futuredata/wmsketch

kaishengtai.github.io
kst@cs.stanford.edu
@kaishengtai

Takeaways
Weight-Median Sketch:

- Count-Sketch for linear classification
- Improved feature hashing
- Lightweight, memory-efficient

classifiers everywhere

Stream processing:
- Many tasks can be formulated as classification problems
- Still lots of room for exploration


